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SUMMARY

The performance of a linear multigrid method using four smoothing methods, called SCGS, CLGS, :

SILU and CILU, is investigated for the incompressible Navier-Stokes equations in general coordinates,

in association with Galerkin coarse grid approximation. Robustness and efficiency are measured and

compared by application to test problems. The numerical results show that CILU is the most robust,

SILU the least, with CLGS and SCGS in between. CLGS is the best in efficiency, SCGS and CILU

follow, and SILU is the worst.

INTRODUCTION

Robustness and efficiency of a multigrid method are strongly influenced by the smoother used.

Because there are so many factors influencing robustness and efficiency, it is hard to say in general

which method is the most appropriate choice for certain applications. In this paper, we study four

smoothing methods for the incompressible Navier-Stokes equations in general coordinates, namely the

SCGS (Symmetrical Coupled GauB-Seidel [18]), CLGS (Collective Line GauB-Seidel, adapted from

SCAL [16]), SILU (Scalar ILU, or TILU in [23]) and CILU (Collective ILU [30]), respectively, which

are used in a linear multigrid method. Galerkin coarse grid approximation (GCA) is used. An

elementary introduction to GCA can be found in [21]. Application to the Navier-Stokes equations is

discussed in [29] and [31].

The multigrid method using the above four smoothers solves the velocity and the pressure

simultaneously (collectively). Decoupled solution is also used in practice, solving the velocity and the

pressure separately. A comparison is given in [1] of multigrid methods using coupled solution with

SCGS and CLSOR (Coupled Line Successive Over Relaxation) smoothing and multigrid methods using

decoupled solution. Comparisons are presented in [13] and [14] for multigrid methods using the SCGS

method and methods using the uncoupled MGPC method (Multigrid Pressure Correction) and the SPC

(SIMPLE Pressure Correction) smoothing methods by means of local Fourier analysis as well as

numerical experiments. It is stated in [17] that it is advantageous to use the coupled approach.

However, both coupled and decoupled solution methods are widely used in practice.
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The comp0risons mentioned above are made for nonlinear multigrid methods in which the coarse

grid operators are computed by using discretization coarse grid approximation (DCA). The relative

merits of DCA and GCA are discussed in [21]. A nonlinear multigrid using DCA for the applications

discussed in the present paper is presented in [8], [9], [10]. Here we apply GCA. Our main mason is that

discretization of the Navier-Stokes equations in general coordinates on a staggered grid is a complicated

affair, and GCA enables us to completely separate discretization and multigrid solution. In this paper,
attention is focussed on smoothing.

EQUATIONS AND DISCRETIZATION

The incompressible Navier-Stokes equations in tensor formulation in general curvilinear coordinates
axe given as follows:

OU,_
O---t + UaU_ + g_'_°P"a- R'e-1 ( ff°'rU_ + g'_°U_),, r = B_, (1)

U '_ = O. (2)

Here U '_, c_ = 1, 2,..., d, are the contravariant velocity components with d the number of space

dimensions, 19 is the pressure, t is the time, B '_ is the contravariant component of the body force, and g'_O

is the metric tensor. About tensor notation, see [2] for more details. U'* is the contravariant derivative.

Readers not familar with tensor analysis can understand what is going on by ass_g tfiat C a_si_=

coordinates are used, and interpreting U_'.aas OU'_/Ox _. U a and B _' are defined by U _' =a" • u,

B'* = a" • b, where u and b are the physical velocity vector and the body force, respectively, and :a & is

the contravariant base vector of the general coordinate system. Let x = (x 1, x2,... ,x a) be a Cartesian

coordinate system and _ = (¢1, ¢2,..., _a) be a general coordinate system. Then the contravariant base

vector a '_ is defined as a _' = grad(_'_), and the metric tensor g_,a is defined by g_'a = a a • aa. It is found

that to achieve better accuracy the variable V '_ = v_U ° should be used instead of U" ([7], [12], [22]),

with x/g the Jacobian of the transformation x _ _ "x/'-g = IOx'_/O_l. ::: .... :_: : : _:_: : _

A finite volume discretization of equations (1) and (2) is presented in [7], [12], [22] on staggered

grids in general coordinates. From now on we concentrate on two dimensions. Cells may be indexed by

a two-tuple of integers i = (il,i2) e G, G = {1,2,... ,I} × {1, 2,..., J}, with I and J the number of

cells in the _1_ and the _2-direction. The index system for discrete variables is defined as follows. The

V 1 variable at the center of the left face, the V 2 variable at the center of the lower face and the-p -

variable at the center of a cell have the s_e index as the cell. Cells can be numbered in rnany ways.
But unless indicated otherwise, we use the lexicographic order. Variables can also be-nu-riibered in

different ways, for ex_ple, blockwise ordering. We use bi0c_se ordering for representa_of _:

equations; orderings used in the smoothers may be different and are specified together witli fl_e

smoothers. In blockwise ordering, V 1, V 2 and p axe ordered separately: :== :=_÷........

(" • •, V_, V_+_, ,V_• .. , V_+x,... ,pk, Pk+l,'" "). Let V = (V 1, V_), B = (B 1, B 2) and p represent the

discrete velocity, the body force and the pressure grid functions, respectively. The discretization results
in the following discrete system:

_1 Vn+_ OGpn+_ ff,(n+_),At + 0Q'(V'_+_) + =

DV,,+I = f_(,,+_) (3)
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with

1V" - (1 - 0)Q'(V '_) - (1 - 0)Gp"
f_,,(n+1)= OB,_+_+ (I - O)B '_+ At ' (4)

fc(n+l) = 0.

The superscript n denotes the time level. The parameter 0 is in [0,1]. The backward Euler method is

obtained by setting 0 = 1, which is the method used in our numerical experiments. Note that (3) is

nonlinear, and is to be solved by a linear multigrid method. Therefore it should be linearized outside

multigrid iterations at each time level. Linearization with Newton's method gives

(vagB)n+l = (ga)n+l(vfi)n + (ge)n(U_) n+l - (V'_'V_3) ". (5)

So we have

q'(v -+1)= qlv "÷i+ q2(v")

with both Q1 and Q2 evaluated at time level n. Note that Q1 is linear. As a consequence, using

blockwise ordering, the linear system to be solved at each time level can be written as

(6)

where

Kx = f, (7)

(ooo) (w,1)= D 0 , x= p,_+l , f = fc(n+l)

fv(n+l) _. fv,(n+l) __ Oq2(Vn).

(8)

with 1

Q = h-7+ 0q ,

A stationary solution is reached if

(9)

is satisfied, where

Ksx = fa (10)

(oo) (B)K. = D 0 ' fs = f¢ •
(11)

THE SMOOTHING METHODS

In this section, the four smoothing methods to be used, SCGS, CLGS, SILU and CILU, are

described briefly. SCGS is of collective point GauB-Seidel type. It is a well-known fact that

GauB-Seidel smoothing is not robust when ceils in physical space are stretched, which occurs often in

general boundary fitted coordinates. Line smoothers are better than point smoothers in handling such

problems. Based on the idea of SCGS, a line version called SCAL is presented in [16]. Successful

applications of the SCGS and the SCAL methods to problems in Cartesian coordinates can be found in,

for instance, [4], [15], [16], [18]. Satisfactory results are also reported for problems in general

coordinates ([8], [9], [10], [11])i The results show that SCAL seems to be more attractive than SCGS.

Good smoothers may also be derived by employing ILU factorization. For a survey of ILU smoothers,

see [20]. Two versions of ILU smoothers, called SILU and CILU, for the incompressible Navier-Stokes

equations are presented in [23] and [30], respectively.
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The SCGS Method

The SCGS method updates variables cell by cell in a smoothing sweep, first in lexicographical order

and then in backward lexicographical order. The five variables, say for cell i E _,

v,1, v,L_, v?, v?i+_2, Pi, which are located at the centers of the four cell faces and the center of cell i,

are updated simultaneously, with el = (1, 0), e_ = (0, 1). For convenience, we introduce e0 = (0, 0).

Let the array y contain the above five variables, and let the local system for the correction 6y of y be
given by

A6y =-:c, (12)

with cT = (c_ 1, c_'li+e_, c_'2, c_'2i+e2, _) and A a 5 x 5 matrix. The local system is formulated as follows.

Equation (8) can be written, in more detail, as

(°11°12eol)(vl)(fVl)K= Q21 qz2 0G 2 , x= V 2 , f= fo2 . (13)

D 1 D 2 0 p f_

c contains the residuals of the five equations corresponding to the five variables and is computed by

civl = (fvl__QIIVI _ QI2V2 - Glp)i, cVli+el

,,_ _ Q21V1 _ Q22V2 G2p)i, cv2ci = (fo2 - i+_2
= (f" -- DIV 1 _ D2V2)i.

= (f_1_ QIIVI _ QItv2 _ G1p)i+,1,

= (fv2_ Q21v1 _ Q22v2 _ G2p)i+,_, (14)

Using stencil notation ([21]), A can be written as

Ql1(i, eo) Gl(i, eo)

Qn(i + el,eo) Gl(i --[--el, -el)

A = Qm(i, eo) G2(i, eo) (15)

Q_(i + e2,eo) G_(i+ e_,-e_)
DI(i, eo) D_(i, el) D2(i, eo) D2(i, e2) 0

Equation (15) is solved analytically. The correction 6y is added immediately to y:

where w is an underrelaxation factor.

y := y + w6y, (16)

=

The CLGS Method

The CLGS method is in fact the same as the SCAL method proposed in [16], except that a

smoothing sweep is composed of line Gaug-Seidel in CLGS instead of alternating zebra in SCAL. So

CLGS updates variables line by line successively. Let the vector y accommodate the variables for a

whole horizontal i2-1ine of cells:

yT (...,V1 V2 V2 E1 V2 E2_- 7 i _ i+e2_Pi, i+ei _ i+e_ _ i+ei+e2_Pi+el

V) V_.2 V:2,+_, ,+_1, ,+_,+_,p_+_,...), i = (il,i_) e G. (17)
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Updating y gives horizontal line GauB-Seidel smoothing. Similarly, if the line is taken vertical for a

fixed il, we have the following arrangement of variables:

yT (. , yi2, y/1 1 2 1 1Vi+e2+e I _ Pi+,2• . , V_+_, pi, V_+.2,
2 1 1

Vi+2,2,K+2e2,Vi+2,__+,l,p,+2,2,..-), i= (i1,i2) e G, (18)

which gives vertical line GauB-Seidel smoothing. We will use forward horizontal line smoothing, unless

indicated otherwise. Other types of line smoothings can be constructed easily by changing the sequence

of visiting lines. Let the equation system for the correction 6y of y be denoted again by equation (12),

which is readily derived from equation (7), with c the residuals of the equations corresponding to the

variables in y. For a line, for example with i2 fixed, the variables having the same il are grouped

together to form a 4-vector (Vi 1, V_2, V___:,p_). This collective arrangement of variables results in a

4 × 4 block matrix representation of the matrix A, which has non-zero elements (4 x 4 matrices) at

positions (il,il 4- 1,il - 2) in the il-th row of A. Solution of equation (12) can be carried out easily by

using block LU factofization, which needs no further discussion. Updating is performed by (16).

Because variables are collectively updated and line GauB-Seidel relaxation is employed, this method is

called CLGS.

The SILU Method

The SILU method is constructed as follows. Because K in (7) is indefinite, it is hard to find a

regular splitting ([19])
K=M-N

such that the classical iteration

x '+1 = x i - M-I(Kx ' - b)

converges. Therefore, an r-transformation I_ is used ([23], [24], [25], [26]), and a regular splitting

(19)

(20)

KI£ = M- N (21)

is easier to find. Equation (21) corresponds to the following splitting of K:

K = MI( -1 - NK -1. (22)

So with underrelaxation, the iteration (20) is revised as

x _+_ = x' - wI_M-l(Kx i - b). (23)

The matrix I_ chosen and the product KI( are given by

I_ = 0 E-11 _ ' D -F

with E = DQ-1G and F = DG. Since I_ involves the computation of Q-1 and E -1, which is not

practical, the following approximation I_ of I_ is applied:

0  '- Dq-IG '
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where _' = diag(DG) and {_ = diag(Q). Hence we use:

x '+1 = x' - wI_M-l(Kx * - b). (26)

Note that the approximation I_ of I_ is different from that used in [23], which is

I_= 0 DG '

because we found with (27) the multigrid method does not work. The ILU factorization of KI_ uses a

nine-point ILU factorization, in which the ordering of variables is nested, that is,

(..., y:, vL1, Soequation(21)canbe re tten as

KI_ = (L + D)D-_(D + U) - N (28)

with L and U strictly lower and upper triangular matrices and D a diagonal matrix. For the k-th row of

the matrix M, the non-zero pattern G for incomplete factorization is chosen to be a nine-point pattem

G = (k, k + 3, k + 3I, k ± 3I ± 3, k ± I q= 3) with I the number of cells in the fl-direction, and the

elements of M in G are chosen to be equal to the corresponding elements of KI_. In this paper, this

method is referred to as SILU because it works with scalar elements of matrices and to distinguish it

from CILU, which works with block elements (here 3 × 3 matrices) and is explained now.

The CILU Method

CILU differs from SILU in two aspects: the choice of r-transformation and a collective treatment of

unknowns. The r-transformation I_ and the corresponding KI_ are given by

I< = 0 D -DQ-_G "
(29)

Note that a parameter _ is introduced. It is observed that ff sometimes has significant effect on

convergence (cf. [30]), but here for simplicity it is fixed at 2, which is found to be a good compromise

for different problems. Obviously, I_ and KI_ both should be approximated since the computation of

Q-_ is impracticable. They are approximated by:

"---= (Q (ff-1)G) (30)KK = D -DQ-1G '(i  ;1o)I_= 0

respectively. KK is approximately factorized as follows:

(31)KI_ = M- N = (L + D)D-_(D + U) - N.

Similar to CLGS, variables are grouped together. For cell i, three variables having the same cell index

are grouped in a 3-vector (1I/1, PTi ,Pi). Of course, this corresponds to nested ordering. This collective

treatment of variables leads to a 3 x 3 block matrix representation of KK. The ILU factorization works

with the 3 × 3 blocks as elements. Because of the collective treatment, we call the resulting ILU method

CILU. In a typical row, for example row k, KK has non-zero elements (3 × 3 matrices) at positions

(k, k 4- 1, k ± I, k + 1-4- 1, k ± I q: 1, k - 2, k + I - 2, k - 2I, k - 21 + 1). We choose the following

non-zero pattem G = (k, k ± 1, k ± I, k ± I ± 1, k ± I q: 1) for the approximate factorization.
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THE LINEAR MULTIGRID ALGORITHM

The linear multigrid algorithm solves the linearized equation system (7) at each time step. The

F-cycle will be used. The number of pre-smoothings and the number of post-smoothings are both 1.

The coarsest grid will be as coarse as possible; the coarsest grid is 2 x 2 in our cases. A direct solver is

applied on the coarsest grid. The transfer operators for prolongation may be different in the computation

of coarse grid matrices by means of Galerkin coarse grid approximation and in the computation of

coarse grid correction. For the computation of coarse grid matrices, the prolongation operators for the

velocities in the momentum equations are bilinear interpolation, but the hybrid interpolation [28] is used

in the continuity equation in order to preserve the structure of the matrix on every grid. The

prolongation operator for the pressure is a piecewise constant interpolation. For completeness, we

describe the hybrid interpolation here. Cell-centered coarsening is used, taking unions of four fine grid

cells to form a coarse grid cell, as illustrated in figure 1. The correspondence between the numbering of

- -2i _m

_1 __ i i + e_ --

--

Figure1. A cell of _1 and the corresponding four cells of G1; the grid points are indicated by --.

the variables (rl c (I : _1 _ R on the coarse grid _1 and of V 1 C U : G1 _ T_ on the fine grid _1

is also presented in this figure; coarse grid quantities are indicated by an overbar. The hybrid

interpolation p1. (11 _-o U 1 is constructed by using linear interpolation in the _l_direction but zeroth

order interpolation in the _2-direction:

[p1.]=__ we 2 we "
(32)

where p1. is the adjoint of p1 (cf. [21] for this way of specifying a prolongation). Here w = 0 when

the "west" point refers to a point outside domain and w = 1 elsewhere, and similarly for e relative to

"east" points. The underlined element indicates that the corresponding point has index 2i on the fine

grid, if the operator is applied to point i on the coarse grid. The hybrid interpolation p2 for V _ is

constructed similarly. Coarse grid correction is computed by using bilinear interpolation for the

velocities and piecewise constant interpolation for the pressure. The restriction operators use the adjoint

of the hybrid interpolation for the momentum equations and that of the piecewise constant interpolation

for the continuity equation. More details about the choice of transfer operators are given in [28] and

[31], and an efficient computation of Galerkin coarse grid approximation is presented in [29] and [31]

for systems of equations.
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Reduction factors are used as measure of the performance of multigrid. The average and the

asymptotic reduction factor will be presented. Let r = Ilrll, with r -- f - Kx the residual of equation (7)
and the norm Ilrll defined by

1

Krn 2 rn(t-" - '<)j/ ,
m='l

(33)

with M the number of partial differential equations and N_" the number of grid points in _,n. At each

time step we have a linearized equation system which is solved by a number of linear multigrid

iterations. Let r0 and r n denote respectively the residual norm before and after n cycles of multigrid

iterations on the finest grid. The average reduction factor B is defined by

1

= (rWr0F •

The reduction factor Pi at the i-th iteration is defined by

(34)

Pi = rjr__l. (35)

If a limit of Pi exists, then it is the asymptotic reduction factor. Define r, = IJr, II, with r, = fs - Ksx

the residual of equation (10). A steady state is approximately obtained if

t 0
ro/r_ <_ e << 1 (36)

t is r, at time t. The values of e are reported in figures 3-8.is satisfied, where r ° is r, at time 0 and r, ....

From the results of the following experiments, we choose the most robust method and undertake a

further test, which aims at finding a proper choice of prolongation operators for the formulation of

coarse grid operators. So the prolongation operators for the velocity in the momentum equations now

use the hybrid interpolation for the velocities in the continuity equation. This specification of

prolongation operators violates the well-known accuracy condition ([6]) for transfer operators. In [31], it

is found that with such specification the muhigrid method still works fine. The Conclusion is that

bilinear prolongation is better for low Reynolds number cases, whereas hybrid interpolation is better for

high Reynolds number cases. With application to various test problems, which are described later, we

perform some further experiments and try to select the best choice.

NUMERICAL EXPERIMENTS AND RESULTS

Three test problems are chosen, which are the square driven cavity problem, the skewed driven

cavity problem and the L-shaped driven cavity problem, as illustrated in figure 2. These impose various

difficulties. For brevity, we refer to the square driven cavity problem as problem 1, the skewed driven

cavity problem as problem 2, and the L-shaped driven cavity as problem 3. In problem 1, the grid is
uniform Cartesian. This gives the simplest discretization, because stretched mesh cells and mixed

derivatives do not occur. In problem 2, the grid is still uniform but the grid lines are not orthogonal, so

mixed derivatives occur. Giving rise to more ch'fficulties, problem 3 has a stretched non-uniform

non-orthogonal grid. For each test problem, two Reynolds numbers are considered, Re -- 1 and
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do

Figure 2: The three test problems and corresponding grids: a. The square driven cavity problem;

b. the skewed driven cavity problem; c. the L-shaped driven cavity problem; d. the computational

domain of the L-shaped driven cavity problem

Re = 1000. The two cases represent viscosity-dominated flows and (mostly) convection-dominated

flows. Benchmark solutions for Re = 1000 are provided in [3], [5], [11], respectively, for problems 1-3.

All computations are carried out on an HP-730 computer.

Prior to the measurement of reduction factors a linear system should be specified. It is natural to use

equation (7) at steady state (more precisely, almost steady state). For Re = 1, 20 time steps with

At = 1 are carded out to give the matrix and the right-hand side at the 'steady state', with each time

step accompanied by one multigrid iteration. Only one multigrid iteration is used because we do not

want to compute the real time history and so it is not necessary to solve the linear system at each time

step very accurately. For Re = 1000, the number of time steps is changed to 100 with At = 0.2. The

smoother used in the computations for the 'steady states' is CILU, v,dth the underrelaxation parameter w

fixed at 0.7. A smaller time step is needed for larger Reynolds numbers to increase the main diagonal

because the discretization uses central differencing, which results in bad smoothing for Re and At being

too large. Figures 3-8 present the streamlines of the test problems. They match well with the

corresponding results in [3], [5], [11].

In order to determine the best performance of each smoother, the underrelaxation parameter is

sampled at an interval 0.1 to find a good value. Tables 1-3 give the reduction factors for the multigrid

methods using different smoothers on the =128_x 128 grids corresponding to the best values of the

underrelaxation factor w. If machineaccuracy is not reached, the reduction factors for the last 5
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iterations are given, otherwise the reduction factors for the last 5 successive iterations before machine

accuracy is reached. The maximum number of grid levels ll is also given; exceeding this causes the
algorithm to fail.

From these tables, we deduce the following observations.

The SCGS smoother works for all testcases. However, it is clearly very problem-sensitive. The

underrelaxation parameter changes significantly as the problems and the Reynolds number change.

For problem 3 and Re = 1000 it is very slow. For problem 2, overrelaxation has to be employed

instead of underrelaxation. The number of grid levels must be reduced in problem 3, i.e., the

coarse grids cannot be very coarse in order to obtain smoothing.

The CLGS seems to work better than the SCGS smoother, because the underrelaxation parameter

does not vary so much and usually the reduction factors are smaller. The one exceptional case is

problem 1, where the number of grids has to be reduced by 1, even for Re = 1. What is more

surprising in this case is that for Re = 1000 convergence cannot be achieved with forward

horizontal line smoothing. But using forward vertical line smoothing and strong damping, we

recover convergence, which is, however, worse than that of the SCGS smoother. To improve the

performance for this case, perhaps symmetrical line smoothing should be used. So further tested

are symmetrical horizontal line smoothing (SHCLGS), symmetrical vertical line smoothing
(SVCLGS) and symmetrical alternating line smoothing (SACLGS). It is found that SHCLGS and

SACLGS both do not show any improvement, because the horizontal sweeps destroy smoothing

seriously; SVCLGS gives some improvement, giving the best average reduction/3 = 0.5610 for
_s = 0.2.

With the SILU smoother, the underrelaxation parameter is less sensitive to change of problem and

Reynolds number than with SCGS and CLGS, but the reduction factors are usually' larger than

those of SCGS and CLGS. The number of grid levels cannot exceed 4 or 5, otherwise the-method

does not work due to loss of smoothing on coarser grids. The well-known dependence of ILU

smoothers on grid point ordering plays a role in problem 3. SILU is here found to be a bad

smoother with lexicographic grid point ordering. The results presented have been obtained with a

backward ordering, starting from comer D (cf. figure 2d) and moving first down and then to the
left.

The CILU smoother is not problem-sensitive. Very good convergence is obtained for all test

problems. It is possible to fix the underrelaxation parameter at one value, which here is found to

be 0.8. The dependence On the grid point ordering is pronounced for problem 3, for which the

backward ordering described for SILU was used.

According to the above observations, we can arrange the four sm0others in the following 6r_ler-fi_0m the

best to worst: CILU, CLGS, SCGS, SILU. Of course, this conclusion is not general, because

discretization and transfer operators both certainly affect the overall performance of an algorithm.

Apart from robustness, efficiency should also be taken into account. Table 4 gives the CPU time in

seconds per cycle (to) for the smoothers. The most robust smoother CILU takes twice as much time per

cycle as the other three smoothers. The efficiency of two multigrid methods using two smoothers
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(referred to as method 1 and method 2) may be compared as follows. Let the average reduction factor

of method 1 be/31 and that of method 2 be/32, and let the CPU time per multigrid cycle be tcl and to2,

respectively. For a required accuracy, for example a reduction e of the initial residual norm, method 1

takes t¢1 In _/In 131CPU time and method 2 takes t_2 In e/In/32 CPU time. Define the efficiency factor

E l of method 1 with respect to method 2 by

to2 In/31 (37)
El = t_l In _"

So if E l > 1, then method 1 is more efficient; if E f < 1 then method 2 is more efficient. For

comparisons among more than 2 methods, one of them is used as a standard, in place of method 2.

Using/3 and te given in tables 1-4 and taking CILU as the standard for the comparison, table 5 presents

E l in all the test cases. Bigger numbers mean higher efficiency. Apparently, The SCGS smoother and
the CLGS smoother are mostly more, but not very much, efficient than the CILU smoother; the SILU

smoother is mostly less efficient. Because SCGS and CLGS can be easily altered to parallellizable

versions by using black-white or zebra ordering, one may argue that SCGS and CLGS have more

paralleUization potential than CILU, and higher efficiency can be obtained. But this may be true only in

two dimensions.

Now with CILU, we investigate convergence ot_ the multigrid method using the hybrid interpolation

instead of bilinear interpolation for the velocities in the momentum equations in the formulation of

coarse grid operators. The results are given in table 6 in terms of the reduction factors for the best

values of w. Clearly, the method works much better for Re = 1000 than for Re = 1. Using the hybrid

prolongation for Re = 1000 the method performs equally as well as the method using the bilinear

prolongation. It is easy to see that for low Reynolds number cases bilinear prolongation is better, but

this is not so clear for high Reynolds number cases. We found that for high Reynolds numbers there are

some cases in which bilinear prolongation does not work but the hybrid prolongation still works well.

Therefore it is safer to use the hybrid prolongation for high Reynolds numbers. One may conclude again

that the hybrid prolongation is more suitable for high Reynolds numbers and bilinear prolongation is

more suitable for low Reynolds numbers.

CONCLUSIONS

The performance of the multigrid method using SCGS, CLGS, SILU and CILU smoothers are

studied for the incompressible Navier-Stokes equations in general coordinates. Galerkin coarse grid

approximation is used in the computation of coarse grid matrices. Both robustness and efficiency of the

methods are investigated and measured in terms of reduction factors and efficiency factors. The results

show that the most robust smoother is CILU; CLGS and SCGS follow. SILU is the worst. For

efficiency, the order from the best to the worst is CLGS, SCGS, CILU and SILU. Although CILU is

somewhat less efficient than CLGS and SCGS and it has less parallellization potential in two

dimensions, it may be more promising in three dimensions because it is much more robust than all the

others and parallellization can also be established among planes.
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For prolongation operators in the computation of coarse grid operators, the hybrid interpolation is a

more appropriate choice for high Reynolds numbers, whereas bilinear interpolation is a more appropriate
choice for low Reynolds numbers.
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Figure 3: Streamlinesfor problem 1,
rs/r s < 4.581 xRe=l, t o 10-11

Figure 4: Streamlines for problem

Re:lO00, t 0rs/r o < 1.804 x 10 -a

Figure 5: Streamlines for problem 2,

rs/r _ < 4.358 xRe=l, t o 10-1o

Figure 6: Streamlines for problem 2,

Re=lO00, t 0rs/r_ < 4.484 x 10 -6

Figure 7: Streamlines for problem 3,

Re = 1, t or,/r, < 9.723 x 10 -9

Figure 8: Streamlines for problem 3,

Re=1000, t or,/r, < 1.172 x 10 -4
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Table 1: Reduction Factors Corresponding to the Best Values of ca for Problem 1 on the 128 x 128 Grid

Smoother I sccsl ones SILU sees CLCS S LU I
Re = I, ro = 12.96

oJ

If

0.8

7

16

Re = 1000, ro = 1.605 x 10-02

1.0 0.9 1.0 0.3 0.1" 0.7 1.0

6 4 7 7 6 4 7

16 16 15 16 16 16 16

Pi

Pi+l

Pi+2

Pi+3

Pi+4

P

0.2787 0.2183

0.2811 0.2184

0.2789 0.2237

0.2816 0.2235

0.2791 0.2300

0.2561 0.1973

0.3708 0.2026 0.6464 0.8344 0.8168 0.4122

0.3761 0.2079 0.6420 0.8950 0.8009 0.4116

0.3807 0.2142 0.5994 0.8735 0.8244 0.4136

0.3849 0.2224 0.6088 0.9048 0.8846 0.4155

0.3880 0.2393 0.5869 0.8899 0.9346 0.4131

0.2863 0.1732 0.4918 0.7773 0.7005 0.2996

• Forward vertical smoothing

Table 2: Reduction Factors Corresponding to the Best Values of w for Problem 2 on the 128 x 128 Grid

Smoother SCGSICLGS SiLU [CILU SCGS ICLGS SILU CILU

Re = l, r0 = 25.92 Re = 1000, r0 = 2.697 x 10 -o9.

l!

i

1.2 0.9 0.9 0.8

7 7 4 7

1.2

7

16 16 16 16 16

pi 0.3377 0.3476 0.7401 0.3857 0.3693

pi+l 0.3406 0.3492 0.7418 0.3885 0.3650

Pi+2 0.3452 0.3512 0.7437 0.3911

Pi+3 0.3432 0.3536 0.7456 0.3931 0.3582

Pi+4 0.3463 0.3563 0.7476 0.3942 0.3558

0.3032 0.3205 0.6315 0.2968 0.3472

1.0 0.8

7 4

16 16

0.4166 0.7784

0.4167

0.9

7

16

0.3052

0.7798 0.3190

0.7811 0.33120.3613 0.4173

0.4180 0.7825 0.3399

0.4184

0.3941

0.7839 0.3447

0.6716 0.2802

7-

_=
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Table 3: Reduction Factors Corresponding to the Best Values of w for Problem 3 on the 128 x 128 Grid

Smoother SCGS [ CLGS I SILU CILU

Re = 1, ro = 18.20

w 1.0

lI 6

i 16

SCGS CLGS I SILU CILU

Re = 1000, r0 = 1.969 x 10 -02

0.9 0.8*

7 5

15 16

0.2320 0.5960

0.1699 0.5878

0.2131 0.5914

0.1941 0.5927

0.2614 0.5909

0.1645 0.4992

0.8* 0.1 0.4 0.2 _ 0.8*

7 5 7 5 7

16 16 16 16 16

pi 0.7302 0.6997 0.9381 0.6527 0.9293 0.3496

pi+l 0.7319 0.4104 0.9399 0.6354 0.9337 0.3355

P_+2 0.7334 0.2317 0.9400 0.6425 0.9376 0.3344

Pi+3 0.7347 0.6643 0.9383 0.6536 0.9411 0.3448

Pi+4 0.7359 0.4450 0.9352 0.6386 0.9442 0.3292

0.5914 0.3673 0.7815 0.5422 0.8183 0.2795

• Backward lexicographical ordering of grid points

Table 4: CPU Time Needed by One Multigrid

Cycle on 128 x 128 Grid

Smoother SCGS CLGS SILU CILU

te 25.0 23.4 28.9 56.3

Table 5. The Efficiency Factor E! for All Test Cases

Smoother I SCGS

Re

Problem 1 1.7

Problem 2 2.2

Problem 3 1.2

CLGS I SILU I CILU

=1

2.2 1.4 1.0

2.3 0.7 1.0

4.3 1.4 1.0

scGsICLGSIS,LUICXLU
Re = 1000

1.3 0.5 0.6 1.0

1.9 1.8 0.6 1.0

0.4 1.2 0.3 1.0
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Table 6: Reduction Factors of the Mulfigrid Method Using CILU and the Hybrid

Prolongation for Various Problems on the 128 x 128 Grids

Problem I Problem 1

oJ

l!

i

Pi

Pi+l

Pi+2

Pi+3

1.0

7

16

0.5878

0.5900

0.5919

0.5949

Problem 2 Problem 3*

Re=l

1.0

16

0.7986

0.8028

O.8064

0.8095

0.8121Pi+4

ro 0.1296 X 10 +02 0.2592x 10+°2

0.9662 x 10 -°3ri+4 0.2396 x 10 -05

0.4606 0.6006

Re= 1000

0.2

7

16

0.7560

0.7538

0.7520

0.7504

0.7492

0.1802 x 10+o2

0.3300 x 10 -02

0.6503

w 1.1 1.0 0.7

ly 7 7 7

i 16 16 16

Pi 0.3732 0.3282 0.3286

Pi+l 0.3778 " 0.3159 0.3282

pi+2 0.3616 0.3222 0.3267

Pi+3 0.3746 0.3629 0.3253

Pi+4 0.386i 0.3837 0.3278

ro 0.1605 x 10 -°1 0.2697 x 10-°1 0.1969 x 10 -°1

ri+4 0.1491 x 10 -12 0.8231 X 10 -12 0.3485 × 10 -12

/_ 0.2808 0.2980 0.2900

• Backward lexicographical ordering of grid points
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